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Summary

In this paper we first introduce the least-squares (L2) finite element method for two-

dimensional steady-state pure convection problems with smooth solutions. We prove that

the L_ method has the same stability estimate as the original equation, that is, the L2

method has better control of the streamline derivative. Numerical convergence rates are

given to show that the L2 method is almost optimal. Then we use this L2 method as a

framework to develop an iteratively reweighted L2 finite element method to obtain a least

absolute residual (L1) solution for problems with discontinuous solutions. This L_ finite

element method produces a non-oscillatory, non-diffusive and highly accurate numerical

solution that has a sharp discontinuity in one element on both coarse and fine meshes. We

also devise a robust reweigting strategy to obtain the L_ solution in a few iterations. A

number of examples solved by using triangle and bilinear elements are presented.



1. Introduction

In this paper we introduce and test numerically the L1 finite element method for the

solution of two-dimensional steady-state pure convection problems. This new method is

designed to obtain accurate non-oscillatory discontinuous solutions. We shall consider the

following steady-state boundary value problem:

us = 0 II, (1.a)

u = g on F_, (1.b)

where fl is a bounded convex domain in i}l: with boundary F, u = u(x, y) is the dependent

variable (e.g., the concentration), fl = (_, ,_2) is a constant vector with [fit = 1, u s =/_.Vu

denotes the derivative in _ direction, and g is the given data on the inflow boundary F_

defined by

r_ = {(x,y)c r :nCx, ). < 0},
in which n is the outward unit normal to I' at point (x, y) C F. The problem (1) is purely

hyperbolic. The characteristics of the problem (1) are the straight lines parallel to /_.

The analytic solution of problem (1) is very simple. The solution is a constant along a

characteristic. The value of this constant is equal to the given value of g at the intersection

of this characteristic and the inflow boundary. However, the solution is discontinuous with

a jump across a characteristic, if the boundary data g is discontinuous. This creates the

greatest challenge to numerical solutions.

Commonly used numerical methods for hyperbolic problems are of the following

types(see e.g., Fletcher[10], Hirsch[13], Johnson[20] and Pironneau[29]): method of charac-

teristics, finite difference and finite element methods. In principle the method of character-

istics is very good, but it is rather cumbersome in practice. Usually one uses finite difference

and finite element methods based on a mesh, which is not adapted to fit the characteristics

of the particular problem. In such a case, if the exact solution has a jump discontinuity

across a characteristic, all conventional finite difference and finite element methods wilt

produce approximate solutions which either oscillate or smear out a sharp front. Finding

accurate approximations of the discontinuous solutions of hyperbolic equations has been a

persistent difficult task in modern numerical mathematics and computational physics.

One research direction towards better resolution around discontinuities is to use an

adaptive h-refinement strategy, such as that extensively investigated by Oden and his

colleagues[28]. However, the data structure and the programming of h-refinement are

complicated, especially for three-dimensional problems.

Impressive sharp discontinuities may be obtained by using filter methods[5,22,9]. For

example, one may use TVD-type finite difference schemes[ll,12] to get a good approxima-

tion, then use filter methods to improve the resolution.



Another potential way is to useconventional finite differenceor finite element meth-
ods to get approximate solutions, then apply imaging processingtechniquesto detect the
locations of discontinuities[30,31].

The L1 procedure for non-oscillatory solutions, first proposed by Lavery in [23,24],

is a rather different approach. The L1 idea can be explained as follows. In the usual L2

curve fitting, the L2 procedure does its best in a sense of least-squares of the residual to

make the curve pass through or by all of the data. If the data are smooth, the L2 fitting

leads to a very good approximation. However, if the data contain abrupt changes, the L2

procedure will produce an oscillatory and diffusive curve around sharp changes. In such a

case, the trouble comes from the fact that the L2 fitting makes the use of individual datum

equally important. The tendency of L1 fitting is to give up the outliers in the ctata and to

require the remaining data be satisfied exactly. Therefore, the L1 fitting is the choice for

discontinuous functions. The same thing happens in the L2 and L1 solutions of discretized

hyperbolic equations. The L_ capacity translates into a capacity to permit the equation

in the "shocked" cell (in which the discretized scheme does not hold) not to be satisfied

while requiring that the remaining equations be satisfied exactly. The LI solutions are

non-oscillatory, highly accurate and right up to the edge of the discontinuity.

The key point of L_ procedure is how to get overdetermined discretized systems. The

standard finite difference and finite volume methods lead to determined linear systems. In

order to get an overdetermined linear algebraic systems, one must rely on non-traditional

tricks, such as, artificially adding the extra boundary conditions on the outflow boundary

for two-dimensional pure convection problems[25], or gradually adding a smaller viscous

term for one-dimensional Burgers' equation[23]. Another big difficulty associated with the

usual L_ procedure is that the linear programming algorithm of Barrodale and Roberts[l]

is very expensive. It requires at least O(n 4) and perhaps as many as O(n 6) operations,

here n is the number of grids in each axis. This excludes the possibility of practical use of

the usual L_ method.

In this paper we first introduce the least-squares (L2) finite element method for two-

dimensional steady-state pure convection problems with smooth solutions. We prove that

the L2 method has the same stability estimate as the original equation, that is, the L2

method has better control of the streamline derivative. Numerical convergence rates are

given to show that the L_ method is almost optimal. Then we use this L2 method as a

framework to develop an L1 finite element method for the solution of hyperbolic equations.

The L2 finite element method with numerical quadrature is equivalent to a weighted col-

location least-squares method[4], in which at first the residual equations are collocated at

the interior points in each element, then the algebraic system is approximately solved by

the weighted least-squares method. The Gaussian points for calculating the element ma-

trices in the L2 finite element method correspond to the collocation points in collocation

methods. If the order of Gaussian quadrature (or the number of quadrature points) is



appropriately chosen, the L2 finite element method amounts to solving an overdetermined

system.

Since the L2 finite element method produces a very good approximation to the exact

solution, we may use the information provided by the L2 solution to find "shocked" ele-

ments. Then we use the L2 method again, but this time we put a small weight for "shocked"

elements, and repeat this procedure a few times until the L1 solution is reached.

The arrangement of this paper is as follows. The L2 method and the convergence

tests for smooth problems are presented in Section 2. In Section 3 we describe the L1

procedure. The numerical results in Section 4 contains the L1 solutions for the pure

convection problems with discontinuities. Conclusions are drawn in Section 5.

2. The L2 Finite Element Method

2.1 Preliminaries and Notations. As we have already shown in our previous papers (see

[19] and the references therein), the L2 finite element method is a universal method for

the numerical solution of any type of partial differentiai equations. It does not matter

whether the partial differential equations are elliptic, parabolic or hyperbolic. As long as

the partial differential equation has a unique solution, the L2 finite element method always

gives a reasonably good approximate solution. The work done in this paper is a natural

extension of our L2 method.

The problem (1) can be taken as a time-dependent problem, if we consider one space

coordinate as a time-like coordinate. Then we may use the implicit time-marching L2 finite

element method introduced in [3] to get an approximate solution. The time marching is

necessary for the Euler equations in aerodynamics[17,18], since the Euler equations have

nonunique solutions. The time-marching L2 finite element method implicitly introduces

an artificial dissipation to exclude the solutions with expansion shocks. For the linear

hyperbolic problem (1), the time-marching is not necessary, because it has a unique so-

lution, continuous or discontinuous. For this reason, we rather treat the problem (1) as

two-dimensional, and directly apply the L2 finite element method to attack it. The general

formulation of L2 finite element methods for first-order partial differential equations can

be found in [19].

In order to compare the L_ finite element method with other finite element methods,

we would like to discuss more details here. Let us consider the following more general

linear hyperbolic equation:

u.+u=f in n, (2.a)

u = g on r_, (2.b)



where f is a given source function. Without loss of generality we assume that the boundary

data g is zero.

Throughout this paper, we use the following notations. L2 (fl) denotes the space of

square-integrable functions defined on Ft with the inner product

and the norm

(u, v) =/_ uvd_

II,.,11_ -- (u,_) _ c L2Cn).

L1 (fl) denotes the space of functions defined on n, whose absolute values are integrable

with the norm
P

= ]o I_ldn u CLx (fl).I1_t1=,

//_ (_) denotes the Sobolev space of functions with square-integrable derivatives of order

up to r. I1.11_denotes the usual norm for H r (fl). We also use the following notations:

< u, w >= fr uwn • _6ds,

where

<u,w>+=fr uwn . _ds,
+

lul,.= (_ u=ln. _la_)_,

r+ = {(_,y)c r: n(x,y). _ _> 0}.

We note that by Green's formula

Cue,w)=< _,w > -(_,_).

Further we also define the function space

S= {u C H' (12) : u = O on r_},

and the corresponding finite element subspace Sh, i.e. Sh is the space of continuous

piecewise polynomial functions of degree k. Here the parameter h represents the maximal

diameter of the elements. By the finite element interpolation theory[7,27] we have: Given

a function u E H k+ 1 (fl), there exists an interpolant fih E Sh such that

II,.,-4"11_ ,::h'_+111,.,11_+,, (3.a)



(3.b)

2.2 The Standard Galerkin Method. Now let us look at the following standard Galerkin

method for the problem (2) (see e.g., Johnson[20]): Find u h C Sh such that

(@ + _h,_h) = (f,w_) w _ e s,,. (4)

We define the error e = u - u h, then the error estimate for the standard Galerkin method

is

llell + telr _< ch_ II,_ll_+ 1, (5)

which is one order lower than that for elliptic and parabolic problems. Furthermore, in

the continuous problem (2), we have the following stability estimate:

I!,_11+ 11,_,_II+ lulr _<_llfll, (6)

But in the standard Galerkin method the stability estimate is

I1_"II÷ I¢' tr _<_llfll, (7)

which has no control of I1_tl.

2.3 The SUPG Method. In order to get better accuracy and stability, methods of upwinding

type have appeared, see e.g., papers by Dendy[8], Wahlbin[32],Christie, Griffths, Mitchell

and Zienkiewicz[6], Hughes and Brooks[15 l, Johnson, N_vert and Pitk£ranta[21], Morton

and Parrot[26]. Below we shall look at the streamline upwinding Petrov-Galerkin method

(SVPG)(Hughes[14]) or the streamline diffusion method(Johnson[20]): Find u h e Sh such

that

_ + c &. (s)(-_ + _, + _) = (/,_h h_.) w h

Johnson and his colleagues have derived the error estimate:

(1 + h) chk+ ,
(llell=+hlle_ll=+ 2 lei_)_< _llull_+l, (9)

which is near optimal. However, in SUPG the corresponding stability estimate is

II¢'11+ _ll,_ II+ I¢' Ir _<_tl/11, (10)

which means that the streamline derivative is less controlled. Another disadvantage of the

SUPG in practical calculation is that the stiffness matrix is non-symmetric which makes

the solution of large-scale problems very difficult.

2.4 The L2 Method. Now let us introduce the L2 finite element method. We assume

that f C L2(12). For an arbitrary trial function v _ S, we define the residual function
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R = v. + v - f. The L2 method is based on minimizing the residual function in a least-

squares sense. We construct the least-squares functional:

I(v) = [[R[[ 2 = llv. + v- fll 2 = (v. + v - f,v. + v - f). (11)

The L2 method reads: Find u C S such that

¢(u) _< I(v) Vv • S.

Taking variation of I with respect to v, and setting 5I = 0 and 5v = w, lead to the L2
weak statement: Find u • S such that

b(u,w) = l(w) Vw • S, (12)

where b(u, w) = (u. + u,w. + w) and l(w) = (f, w. + w). The corresponding L2 finite

element method has the following form: Find u h • Sh such that

b(uh,w h) =/(w h) Vw h • Sh. (13)

Let us now turn to the error estimate. Since we can replace w in (12) by w h, we have

b(u,wh) =l(w h) v_ h • sh. (14)

By subtracting (13) from (14) we get the following orthogonality for the error e:

b(e, w h) = O.

Let fi • Sh be the interpolant of u satisfying (3) and write p = u - t2h and 0 = u h - fih SO
that e = p + 0. Then we have

lie. + ell _ -- b(e,e) = b(e,p) + b(e,O) = b(e,p)

< lie. + ellllP. + PIt,

or

lie. + ell< lip. + pll < lip.11+ Ilpll.
Recalling (3) we obtain the error estimate:

lie.+ ell_<cnktl=llk+1. (15)

Since the residual of approximate solution R h = u_h + Uh _ f = e. + e, (15) is also the
residual estimate:

]lRh]] < chkllu]l k+1, (16)



which means that the residual estimate is optimal. Using Green's formula and the bound-

ary condition, (16) can be rewritten as

(ltell2+ Ile ll + < e,e >+),'- < C kfiullk+,, (17)

which shows that the error estimate for e_ is optimal, but the error estimate for e is one

order lower than optimal. Although in numerical tests (see below) we have observed that

the accuracy of the L2 method is higher than the kth order, it is still an open question for

getting a better theoretical error estimate in general.

By taking w h = u h in (13), we can obtain the stability estimate:

]lu"ll + Ilu ]l + lu tr _ cIIfll. (18)

This estimate is the same as the above estimate (6) for the continuous problem. It means

that the L2 method has better control of the streamline derivative. We also note that the

bilinear form in (13) is symmetric, therefore the matrix of the resulting algebraic system

is symmetric and positive definite. This is a very important advantage of the L2 method

over other methods in practice.

2.5 Numerical Experiments of the L_ Method. We chose the following model problem:

Ou Ou

O--x + Oy sin(x + y) in 12, (19.a)

u = O on F_, (19.b)

where 12 = {(x,y) C _2 : 0 < x < 1, 0 < y < 1} is the unit square, and F_ = {(x,y) E F"

x = 0 or y = 0}, in which r is the boundary. This problem has a smooth exact solution

u = sin(x)Mn(y).

We have tested the bilinear element with uniform meshes. At first the one-point

Gaussian quadrature was used for calculating the stiffness matrices. In the case of one-

point quadrature, the L_ method is equivalent to the collocation least-squares method

with one collocation point at the center of each element. It is easy to check that in such a

collocation method, the number of discretized algebraic equations "nequ" is equal to tile

number of unknowns "nelem 2", here "nelem" is the number of elements. In other words,

in such a case we solve a determined system. Therefore, there is no difference between the

L2 solution and the direct collocation solution. The numerical result for convergence rate

is shown in Figure 1. The optimal rate, i.e. ]fell _< ch 2, is observed.

Also we would like to mention that the L2 method with one-point quadrature is

equivalent to the central finite difference scheme. Therefore, the L2-optimality may be

derived by using the finite difference theory.

8



The numerical rate of convergence with the 2 × 2 Gauss rule is also included in Figure

1. In this case, the L2 method solves an overdetermined system. The convergence rate is

around O(h"_5), which is near optimal. Here, more theoretical study is needed.

We also did the numerical tests with specified extra boundary conditions on the out-

flow boundary F+ = {(x,y) E F : x = 1 or y = 1). In this case, the L_ method with the

2 × 2 Gauss rule gives the optimal rate of convergence lieli < ch 2 (figure 1).

3. The L1 Finite Element Method

If the solution is non-smooth, the above L2 method still performs quite well. Of course,

the argument about the error estimates does not hold. As expected, the L2 method smears

out the jump across a characteristic. As we pointed out in Section 1, the trouble comes from

"shocked" elements, where the direction derivative across the jump approaches infinity and

the discretized equation is not valid. But the usual L2 method does not recognize them,

and just equally treats "shocked" and "smooth" elements. This is the reason that we

would like to use the L1 idea to suppress the interference of "shocked" elements.

We still consider the problem (2). We want to minimize the L1 norm of the residual:

IIRIIL, ---- lua + u- fldn. (20)

Obviously, we should work on the discretized version of (20) by using the finite element
method: i.e. Find the minimizer ah of

in which

nelern ngatts

3"=1 /=1

w, IR,llJ( 6, rh)l, (21)

R, = u_ (_t,r/,) + uh (_,,r/,) - f(_,,r/,), (22)

where Rt stands for the residual at each Gaussian point, ngaus denotes the number of

Gaussian points, wl is the Gaussian weighting, iJl is the determinant of the Jacobian

matrix, and (_,,rh) is the local coordinates of Gaussian points. As usual, u h can be

expressed by the shape functions and the nodal values:

=
m-:l

where "nnode" is the number of nodes in an element, _._ are the shape functions, and

Um are the nodal values. In order to make the problem (21) meaningful, we must have an

9



overdeterminedalgebraicsystem. It can be realizedsimply by appropriately choosing the
number of Gaussianpoints.

Now the task becomesfinding the solution which has the leastabsolute residual. It is
well known that any L1 problem can be transferred into a linear programming problem[2].

Then we may use a linear programming algorithm to find the L1 solution. But right now

this type of algorithm is too time-consuming. We are still waiting for a fast algorithm

which can at least take the advantage of sparse finite element matrix.

Fortunately, we can use another approach, e.g., an iteratively reweighte least-squares

method(IRL2)[2], which is based on repeatedly solving a weighted least-squares problem:
Find the minimizer fih of

rtelem t_llaus

j= 1 l= 1

W_w, lR,121J (_,, _7,)l, (23)

in which
1

w,- [R, lprev,ou.' (24)

where Wj denotes the weight set, which in turn depends on the information of the previous

step. The IRL2 would begin with the initial weight set Hit = 1. This first step is nothing but

the L2 method introduced in Section 2. The result of this L2 method determines a new set

of weights by (24). In the second iteration, the residual IR, I is larger in "shocked" elements.

Thus the weight Wl for "shocked" elements is smaller, and their inference becomes less

-h _ _h [I is small.important. This procedure is repeated until llu_,rr_,_t prev_ouo

Our numerical experiments reveal that the above method converges extremely slowly.

The problem is that the difference between the residuals of "shocked" and their neighboring

elements in the first L2 solution is not significant enough. This difficulty can be overcome

simply by using the following weights:

1

W,- IR'I 6 (25)
previous

It corresponds to additionally increasing the importance of "smooth" elements and reduc-

ing the inference of "shocked" elements. This is reasonable, since the theory of LI fitting[2]

tells us that the L_ procedure eliminates completely the equations, which will have nonzero

residuals, from the system. This trick is usable, also because our non-weighted L2 method

is good enough to locate the "shocked" elements. That is, in the results of our L_ method,

the absolute value of the residuals in "shocked" elements is always greater than that in
other elements.

10



We may further simplify the procedure by using another simple and reliable "shock"

indicator-the variation of nodal values in each element- instead of the residual. The

variation is defined as

nnode

m=l

U 0 = Unnod e , (26)

The advantage of using the variation as a "shock" indicator is as t'ollows: Once the jump

in the boundary data is given, we may know the exact values of the variation in "shocked"

elements in advance. There are only a few possible values, which depend only on the type

of finite element and are independent of the shape and size of the particular element, and

have no relation with the location of quadrature points.

The implementation of this L1 method is really straightforward. If an L2 finite element

code is already available, it needs only a few additional lines of FORTRAN statements.

4. Numerical Results of the L1 Method

We consider the following problem:

Ou Ou
+ tan 35°l=- = 0 Jr, n, (27.a)

0--_

where fl = {(x,y) E _2 : 0 < x < 1, 0 < y < 1} is the unit square with the boundary F.

The inflow boundary conditions are

u=2 oN r,={(x,u)er:x=0}, (27.b)

(27.c)

Equations (27)

u---1 on cr:x>_handu=O},

in which h is a positive constant less than 1 (h will be a mesh length).

represent uniform flow along straight lines inclined at an angle of 35 ° with respect to the

x-axis. In this case, any straight line, which is between and parallel to y = xtan(35 °) and

y = (x - h)tan(35°), could be considered as the location of discontinuity. For example, we

may write the solution of (27) as

u = 2 on and above the line y = (x- _)tan(35°),

u = 1 below the line y = (x- _)tan(35°).

The jump discontinuity occurs along the line y = (x- _)tan(35°).

11



The boundary conditions (27.b)and (27.c) canbe transferred into the source term in
the equation (27.a). Therefore, the formulation of the L2 method described in Section 2

can be directly applied to the problem (27).

The computational results presented in this paper were obtained in double precision

on our PC-386. A direct solver with variable band-width was used to obtain the solution

of linear algebraic equations. The computing time will be significantly cut by using the

preconditioned conjugate gradient method[16], since the L2 solution is already close to L1

solution and the final iteration is often just for correcting one or two nodal values which

have not yet reached 15 digit accuracy.

4.1 Linear Triangle Element. At first numerical experiments were carried out for the

problem (27) using linear triangle elements on uniform meshes with n = 5, 15. Here n is the

number of grids in each coordinate. For triangle elements, we use the one-point Gaussian

quadrature. Since there are 2n 2 elements, it corresponds to having 2n _ equations. Since

there are (n + 1) 2 nodal values and (2n + 1) boundary conditions, the number of unknowns

is (n + 1) 2 - (2n + 1) = n :. That is, the number of equations is double the number of

unknowns. Therefore, the L2 method amounts to solving an overdetermined system. It

does not make sense to take more quadrature points, because in a linear triangle element

c3uh/0x and Ou h/Oy are constants, and thus the residuals at different points are the same.

The L2 results for n -- 5 (50 triangle elements) are listed in Table 1. The numbers

in Table 1 are the nodal values. Because the mesh is very coarse, the jump discontinuity

is smeared severely. Starting from this bad L: solution, after 4 iterations of IRL2, we

obtained the perfect L1 solution listed in Table 2. This solution has absolutely accurate 15

digits. Here we should note that a double precision (8 bytes or 64 bits) real number in a

computer can only represent a decimal number with 15 digits. This solution has completely

no oscillation and no diffusion. The transition over the discontinuity is accurately located

in the vicinity of the line y = (z- _)tan(35°), which has a width of hsin(35 °) in a sense

discussed above, and is accomplished in just one element.

The L2 solution for n = 15 (450 triangle elements) is given in Table 3. This solution

is diffused, and slightly oscillatory around the jump. Starting from this L2 solution, the

accurate L1 solution is obtained after 4 iterations of IRL2 (see Table 4). The LI solution

again has 15 digit accuracy. Because of the limitation of page size, we give the nodal values

with only 8 digits in Table 4.

4.2 Bilinear Element. Numerical experiments were also carried out for the problem (27)

using biIinear elements on uniform meshes with n = 5,15,40, and 80. For bilinear elements

we use the 2 × 2 quadrature. In each element we may write the finite element approximation

of u as a bilinear function:

u h(x,y) =a+bx+cy+dxy.

12



Thus the residual is

R h Ouh Ou h
- Ox q- tan(35°) i)y

- b + tan(35°)c + d(y + tan(35°)x),

which means that the four discretized equations at four Gaussian points are independent

in this case. (If the flow inclines at an angle of 45 ° or 135 ° with respect to the x-axis, we

have three independent equations, because the location of Gauss ian points is symmetric.)

All together we have 4n _ equations and n 2 unknown nodal values. Therefore, we deal with

an overdetermined system.

The L2 solution of a coarse mesh with 5 × 5 bilinear elements is listed in Table 5.

Starting from this rough solution, after 4 iterations we obtained the L1 solution listed in

Table 6. We again observed a crisp computational jump in one element. This solution is

perfectly non-oscillatory and non-diffusive. We also list the summation of four absolute

residuals and variations in each element in Table 7 and Table 8. The large numbers (2 for

residual and 8 for variation) indicate the "shocked" elements.

The L2 solution of a mesh with 15 × 15 bilinear elements is presented in Table 9, and

the corresponding contours are given in Figure 2. This approximate solution is reasonably

good, although the discontinuity is smeared out, and slight oscillations occur. From this

table and this figure, we can hardly tell where the jump is located. However, after 5

iterations, a clean L1 solution is reached (Table 10 and Figure 3). This solution again has

the correct 15 digits. The element residuals and variations are given in Table 11 and Table

12 to contrast "shocked" elements with "smooth" elements.

The L_ solution of a mesh with 40 × 40 bilinear elements is illustrated in Figure 4.

Taking this L2 solution as an initial solution, after 8 steps of processing, we obtained the

L1 solution illustrated in Figure 5. No other currently available methods can produce such

a sharp discontinuity as this.

We also did numerical tests for meshes with up to 80 × 80 elements, combined with

various inflow angles and different boundary conditions. All of our L_ results are perfectly

accurate. Because of the page limitation, we do not present these results here.

5. Conclusions

A new LI procedure based on the iteration of L2 finite element method for the solution

of pure convection problems is developed. The overdetermined algebraic system is inher-

ently obtained by choosing an appropriate number of Gaussian points in the formation

of element matrices. The time-consuming linear programming for solving overdetermined

systems turns out to be not necessary.

13



This L1 finite element method captures two-dimensional discontinuity in bands of

elements that are only one element wide on both coarse and fine meshes. The solution of

this method has no smearing and no oscillation, and has superior accuracy. The method

is simple and robust, and can be easily extended to three-dimensional pure convection

problems.

We believe that the methodology developed in this paper can be transferred into many

other areas which deal with sharp fronts such as oil reservoir simulation, weather forecast,

and image enhancement. We have already extended this method to two-dimensional com-

pressible flows with shocks.
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Figure 1. Computed convergence rate for the pure convection problem.
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Figure 2. Contours of the L2 solution for the pure convection problem

(15 × 15 bilinear elements)

Figure 3. Contours of the LI solution for the pure convection problem

(15 x 15 bilinear elements)
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Figure 4. Contours of the L2 solution for the pure convection problem

(40 x 40 bilinear elements)

Figure 5. Contours of the LI solution for the pure convection problem

(40 x 40 bilinear elements)
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Table 1. Nodat Values of L2 Solution for n = 5 ( 50 triangte Etements )
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Table 2. Nodal Values of LI Solution for n = 5 ( 50 triangte Etements )
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Table 5. Nodal Values of L2 Solution for n = 5 ( 25 Bi[inear Elements )
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Table 6. Nodal Values of LI Solution for n = 5 ( 25 Bilinear Elements )

0.18702E-14 0.17055E-15 0.49194E-14 0.48678E-14 0.22330E-14

0.92255E-15 0.49022E-14 0.35653E-14 0.11563E-15 0.18920E-14

0.18702E-14 0,18828E-14 0.59523E-16 0.20000E+01 0.20000E+01

0.85381E-15 0.20000E+01 0.20000E+01 0.20000E+01 0.14050E-14

0.20000E+01 0.20000E+01 0.49960E-15 0.64103E-16 0.49960E-15

Table.7 Element Residuals of L1 Solution for n = 5 ( 25 Bilinear Elements )

0.71054E-14 0.I0658E-13 0.19540E-13 0.19540E-13 0.88818E-14

0,I0658E-13 0.19540E-13 0.15987E-13 0.53291E-14 0.88818E-14

0.71054E-14 0.88818E-14 0.35527E-14 0.80000E+01 0.80000E+01

0.71054E-14 0.80000E+01 0.80000E+01 0.80000E+01 0.53291E-14

0.80000E+01 0.80000E+01 0.17764E-14 0.17764E-14 0.17764E-14

Table.8 Element Variations of L1 Solution for n = 5 ( 25 Bitinear Elements )
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